The very well poised $\sb{6}\psi \sb{6}$. II
نویسندگان
چکیده
منابع مشابه
Orthogonality of Very Well-poised Series
Rodrigues formulas for very well-poised basic hypergeometric series of any order are given. Orthogonality relations are found for rational functions which generalize Rahman’s 10φ9 biorthogonal rational functions. A pair of orthogonal rational functions of type RII is identified. Elliptic analogues of some of these results are also included.
متن کاملSome Remarks on Very - Well - Poised 8 φ 7 Series
Nonpolynomial basic hypergeometric eigenfunctions of the Askey–Wilson second order difference operator are known to be expressible as very-well-poised 8φ7 series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new der...
متن کاملA simple proof of Bailey’s very-well-poised 6ψ6 summation
Using Rogers’ nonterminating 6φ5 summation and elementary series manipulations, we give a simple proof of Bailey’s very-well-poised 6ψ6 summation. This proof extends M. Jackson’s first proof of Ramanujan’s 1ψ1 summation.
متن کاملAn Identity of Andrews, Multiple Integrals, and Very-well-poised Hypergeometric Series
Abstract. We give a new proof of a theorem of Zudilin that equates a very-well-poised hypergeometric series and a particular multiple integral. This integral generalizes integrals of Vasilenko and Vasilyev which were proposed as tools in the study of the arithmetic behaviour of values of the Riemann zeta function at integers. Our proof is based on limiting cases of a basic hypergeometric identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1984
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1984-0733409-8